Reg. No.:	
10. 110	

Question Paper Code: 41357

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2024.

Third Semester

Electrical and Electronics Engineering

MA 3303 - PROBABILITY AND COMPLEX FUNCTIONS

(Regulations 2021)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. What are the axioms of probability?
- 2. Give the moment generating function of Binomial and Poisson distributions.
- 3. Suppose X an Y are independent continuous random variables. Show that correlation between X and Y is zero.
- 4. State the central limit theorem for probability of random variables.
- 5. Is the function $f(z) = 2iz + 6\overline{z}$ analytic?
- 6. What is conformal mapping?
- 7. Identify the singular point and the type of singularity in $f(z) = \frac{1 \cos z}{z}$.
- 8. State Cauchy's Residue theorem.
- 9. Solve the differential equation $(D^2 + 5D + 6)y = 0$.
- 10. Give the general form of Legendre's linear equation.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) A printer manufacturer obtained the following probabilities from a database of test results. Printer failures are associated with three types of problems: hardware, software, and others, with probabilities 0.1, 0.6, and 0.3 respectively. The probability of a printer failure given a hardware problem is 0.9, given a software problem is 0.2 and given any other type of problem is 0.5. If a customer enters the manufacturer's website to diagnose a printer failure, using Baye's theorem determine what is the most likely cause of the problem?
 - (ii) The number of telephone calls that arrive at a phone exchange is often modeled as a Poisson random variable. Assume that on the average there are 10 calls per hour.
 - (1) What is the probability that there are exactly 5 calls in one hour? (2)
 - (2) What is the probability that there are 3 or less calls in one hour? (3)
 - (3) What is the probability that there are exactly 15 calls in two hours? (3)

Or

- (b) (i) The distance between major cracks in a highway follows an exponential distribution with a mean of five miles.
 - (1) What is the probability that there are two major cracks in a 10-mile stretch of the highway? (2)
 - (2) What is the standard deviation of the distance between major cracks? (2)
 - (3) What is the probability that the first major crack occurs between 12 and 15 miles of the start of inspection? (2)
 - (4) Given that there are no cracks in the first five miles inspected, what is the probability that there are no major cracks in the next 10 miles inspected? (2)
 - (ii) The line width of semiconductor manufacturing is assumed to be normally distributed with a mean of 0.5 micrometer and a standard deviation of 0.05 micrometer.
 - (1) What is the probability that a line width is greater than 0.62 micrometer? (3)
 - (2) What is the probability that a line width is between 0.47 and 0.63 micrometer? (3)
 - (3) The line width of 90% of samples is below what value? (2)

12.	(a)		ermine the value of c that makes the function $f(x, y) = c(x + y)$ a joint pability function over the nine points with $x = 1, 2, 3$ and $y = 1, 2, 3$ (16)
		(i)	Determine $P(X < 2, Y < 2)$
		(ii)	Determine correlation for the joint probability mass function $f(x, y)$.
			Or
	(b)	_	udy on the deflection of particle board from stress levels of relative idity gave the following measurements.
	X	Stres	ss level (%) 54 57 61 65 68 72 75 80
	Y	Defle	ection (mm) 16.4 18.6 14.3 15.1 13.5 11.6 11.1 12.5
		(i)	Construct a linear regression for thé given data. (8)
		(ii)	Find the deflection when stress level is 70%. (2)
		(iii)	What is the estimate of σ^2 ? (6)
13.	(a)	(i)	State and prove Cauchy-Riemann equation for analytic functions in Cartesian coordinates. (8)
		(ii)	Verify that $u(x, y) = x^3 - 3xy^2$ is harmonic in the whole complex plane. Also find the conjugate harmonic and hence construct an analytic function $f(z) = u + iv$. (8)
			Or
	(b)	(i)	Describe the transformation $w = z + c$ and $w = cz$, under conformal mapping. (8)
		(ii)	Find the linear fractional transformation that maps -1 , i, 1 in the z-plane onto 0, i, ∞ in the w-plane. Also find the images of x-axis and y-axis. (8)
14.	(a)	(i)	State and prove Cauchy's integral theorem. (8)
		(ii)	Evaluate the integral $\oint_{c} \frac{1-4z+6z^2}{\left(z+\frac{1}{4}\right)(3z-1)} dz$, where $C: z =1$. (8)
			Or
	(b)	(i)	Find the Taylor and Laurent series expansion of $f(z) = \frac{-2z+3}{z^2-3z+2}$
	(~)	(-)	with centre 0. $z^2 - 3z + 2$
		(ii)	Evaluate the integral $\oint_c \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2(z-2)} dz$, where c is the circle
			z = 3. (8)

- 15. (a) Solve the differential equation $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + 2y = x + e^x \cos x.$ (8)
 - (ii) By method of variation of parameter, solve $\frac{d^2y}{dx^2} y = \frac{2}{1 + e^x}$. (8)

Or

- (b) (i) Solve the simultaneous equation $\frac{dx}{dt} + 5x 2y = t$, $\frac{dy}{dt} + 2x + y = 0$. (8)
 - (ii) Solve the differential equation $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 4y = 2x^2 + 3e^{-x}$, by method of undetermined coefficients, assuming the particular solution as $y = a_1x^2 + a_2x + a_3 + a_4e^{-x}$. (8)

made to a contract of